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ABSTRACT 

15’8 9 2 
The pumpdown, degassing,’ and u l t i m a t e  vacuum c h a r a c t e r i s t i c s  of 

s ingle  and mult iport  vacuum systems under var ious operat ing condi t ions 
are compared by means of a mathematical model and e l e c t r i c a l  analog 
computer s imula t ion. 

Using t h i s  technique, i t  was shown t h a t  a l a rge  mult iport  vacuum 
system employing a la rge  d i f fus ion  pump i s  f e a s i b l e  and a f fo rds  a 
number of advantages not  a t t a inab le  i n  an a r r ay  of ind iv idua l  s ing le-  
chamber systems of nominally s i m i l a r  c a p a b i l i t i e s .  

Experimental data f o r  an ex i s t ing  single-chamber laboratory system 
a r e  i n  c lose  agreement with performance c h a r a c t e r i s t i c s  predicted by 
the s imulat ion method . 
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TECHNICAL MEMORANDUM X-53175 

VACUUM SYSTEM SIMULATION AND 
MULTIPORT SYSTEM FEASIBILITY STUDY 

SUMMARY 

The pumpdown, degassing, and ul t imate  vacuum c h a r a c t e r i s t i c s  of 
s ing le  and mul t ipor t  vacuum systems under var ious operat ing condi t ions 
are compared by means of a mathematical model and e l e c t r i c a l  analog 
computer simulation. 

Using t h i s  technique, it was shown t h a t  a la rge  mult iport  vacuum 
system employing a la rge  d i f fus ion  pump i s  f e a s i b l e  and a f fo rds  a 
number of advantages not  a t t a i n a b l e  i n  an a r r ay  of ind iv idua l  s ing le-  
chamber systems of nominally s imi la r  c a p a b i l i t i e s .  

B e l l  j a r  pressure i n t e r a c t i o n s  were shown t o  be minimal; however, 
the  e f f e c t  of re ta rded  r e tu rn  t o  ul t imate  vacuum must be evaluated f o r  
each app l i ca t ion  considered. 
es t imates ,  however, so a somewhat more rap id  response a t  a lower 
pressure  level may be expected. 

A l l  assumptions a r e  conservative 

Experimental da t a  fo r  an ex is t ing  laboratory system agree w i t h  
performance cha rac t e r i s t i c s .  predicted by the  simulation method and 
lend credence t o  the  modeling and simulation technique. 

INTRODUCTION 

During recent  years , the Materials Division has been engaged i n  
the  preliminary evaluat ion of mater ia ls  for  space and nigh vacuum use. 
Several vacuum systems used f o r  weight l o s s  s tud ie s  have undergone 
constant  evolut ion a s  improved components and techniques were developed. 
The poin t  has been reached, however, where the procurement of new 
systems must be evaluated aga ins t  major modifications of those now i n  
use. 
new systems. 

This r epor t  descr ibes  a f e a s i b i l i t y  study of one of the poss ib le  

Of the major experimental problems now confronted, quick a t t a i n -  
ment of programmed temperature and rapid evacuation t o  a low ul t imate  
pressure  a r e  two of g r e a t e s t  concern. The quick attainment of 
programmed temperature i s  p r a c t i c a l l y  independent of the vacuum system 
i t s e l f ;  however, one possible  method f o r  a t t a i n i n g  the o ther  ob jec t ive  



i s  through use of a mult iport  system such as  t h a t  described here in .  
A t  the same t i m e ,  i t  would be advantageous t o  a d d  b e l l  jars a t  a 
minimum expenditure of funds and labora tory  space while reducing , 

expected maintenance. Further  , a contingency c a p a b i l i t y  f o r  extreme 
pumping speed a t  b e t t e r  than 10-7 t o r r  i s  des i r ab le .  

During many months of i nves t iga t ion  and planning, components and 
packaged systems of fe red  by a l l  known reputable  vacuum supp l i e r s  have 
been s tudied.  I n  the f i n a l  ana lys i s ,  cons idera t ions  such as perform- 
ance,  c o s t ,  maintenance, and space conservation ind ica ted  t h a t  a 
cent ra l ized ,  mult iport  vacuum system a f f o r d s  a number of  advantages 
t h a t  a r e  not a t t a i n a b l e  i n  an equivalent  a r r a y  of ind iv idua l  systems. 

DEFINITION OF PROBLEM 

Figure 1 shows the  major components and c h a r a c t e r i s t i c s  of the  
apparatus ,  which cons i s t s  b a s i c a l l y  of a l a rge  d i f fus ion  pump and s i x  
o r  e i g h t  b e l l  jars. For purposes of the  study, only three  b e l l  jars 
were considered. 

The cen t r a l  d i f fus ion  pump, backed by a small d i f f u s i o n  booster  
and a mechanical forepump of intermediate  s i z e ,  would have a high 
nominal pumping speed and an u l t imate ,  vacuum of approximately 10-9 t o r r  
with a cryogenic b a f f l e .  

An enlarged upper chamber would provide s u f f i c i e n t  spacing between 
b e l l  j a r s  to make room f o r  ind iv idua l  pneumatic valves  f o r  automatic 
sequencing and cont ro l .  
volume cons is ten t  with the space required f o r  weight l o s s  s tud ie s  
and could be p a r t i a l l y  evacuated before  being exposed t o  the d i f fus ion  
pump (FIG 2 ) .  

The b e l l  j a r s  would each conta in  a minimum 

Trapping would be tandem, wi th  l i q u i d  n i t rogen  b a f f l e s  below each 
b e l l  j a r  t o  supplement the l a rge  b a f f l e  above the d i f fus ion  pump. The 
conductances of a l l  components were considered; however, the cryopumping 
c a p a b i l i t i e s  of the  l i qu id  nitrogen-cooled surfaces  were neglected.  I n  
t h i s  respec t ,  the  r e s u l t s  obtained a r e  conservat ive.  

Above each b a f f l e  i s  a pneumatic valve which w i l l  permit i s o l a t i o n  
and vent ing of the b e l l  jar  without d i s tu rb ing  the  d i f fus ion  pump o r  
exposing the cold b a f f l e  t o  atmospheric condi t ions.  The proposed 
arrangement provides f o r  automatic monitoring t o  rough-pump the  b e l l  
jar (FIG 2) and then switch t o  pumping v i a  the  d i f fus ion  pump. This 
cont ro l  did no t  en te r  i n t o  the ana lys i s .  
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Major f a c t o r s  of i n t e r e s t  were pumping speed a t  the b e l l  j a r s ,  
magnitude and durat ion of pressure in t e rac t ions  among b e l l  j a r s  (due 
t o  cycl ing o r  consecutive r a t h e r  than concurrent shutdown/pumpdown) , 
and the  e f f e c t s  of gas load due t o  leakage, outgassing, and specimen 
v o l a t i l i z a t i o n .  The most important f a c t o r  prompting t h i s  study was the 
concern regarding the pressure in t e rac t ions  ("bursts") among b e l l  jars 
expressed by representa t ives  from three leading vacuum equipment 
supp l i e r s .  A fu r the r  incent ive  was the d e s i r e  t o  develop a f l e x i b l e  
program f o r  vacuum system simulation which would be ava i l ab le  f o r  
general  laboratory use i n  system design and ana lys i s .  

CONDITIONS AND ASSUMPTIONS 

A roughing l eve l  of approximately 10-2 t o r r  i s  expected fo r  the 
enlarged chamber (250 liters) above the  d i f fus ion  pump before operat ion 
of t h i s  pump. 
evacuated t o  t o r r  or  l e s s  pr ior  t o  automatic exposure t o  the high 
vacuum p o r t  (FIG 2) .  The b r i e f  times required f o r  valves  t o  open have 
been neglected i n  the ana lys i s .  

S imi la r ly ,  each of the  1 5 - l i t e r  b e l l  j a r s  would be 

Component pumping speeds and conductances f o r  the cases  c i t e d  
a r e  given i n  Table I. Pressure gradients  wi th in  open chambers, 
s p e c i f i c a l l y  the b e l l  j a r s  and the enlarged chamber, were assumed t o  be 
neg l ig ib l e .  The assumed d i f fus ion  pump speed c h a r a c t e r i s t i c s  f o r  
cases  4-12, a t yp ica l  manufacturer's curve, a r e  shown i n  FIG 3 .  Curves 
f o r  cases  13 and 14 a r e  not  shown but had a s imi la r  source. 

Leakage, outgassing, and v o l a t i l i z a t i o n  r a t e s  a r e  out l ined i n  
Table I. The maximum leak r a t e  c i ted i s  conservative i n  t h a t  leak 
de tec t ion  methods which a r e  ava i lab le  permit reduct ion of the rate 
below t h a t  assumed. However, the outgassing r a t e  i s  a somewhat 
nebulous f a c t o r  and becomes r e l a t i v e l y  more ser ious  a s  the pressure 
f a l l s  lower and lower. Cases 4-6* represent  sequent ia l  pumpdown of 
th ree  b e l l  j a r s  f o r  a minimal-leakage system, and case 7 simulates 
simultaneous pumpdown under s imilar  condi t ions.  Cases 8-10 s t a r t  with 
a zero-leakage s t a t i o n ,  add a minimal-leakage s t a t i o n ,  and conclude 
with the pumpdown of a b e l l  jar containing an evaporating mater ia l .  
t h i s  way, p r a c t i c a l l y  a l l  ranges of experimental condi t ions a r e  included 
i n  the  simulation. Cases 11 and 12 i nd ica t e  the e f fec t iveness  of the 
high capaci ty  pumping system when it i s  used to  evacuate r e l a t i v e l y  
l a rge  environmental chambers. 

I n  

9: All case numbers numerically equal the corresponding f igu re  
numbers f o r  the convenience of the. reader .  
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MATHEMATICAL MODEL 

Mathematical representa t ion  of the simulated systems c o n s i s t s  of 
wr i t i ng  d i f f e r e n t i a l  mater ia l  balances around each b e l l  j a r  and around 
the  d i f fus ion  pump with i t s  overhead chamber. 
the change of pressure (by means of the PVproduct) t o  the  n e t  input-  
output flows a s  determined by pumping, outgassing,  leakage, and 
v o l a t i l i z a t i o n .  

Each balance equates 

For each b e l l  j a r  E:  

where the term represents  desorpt ion of the atmospheric contaminants 
from the  b e l l  jar and base p l a t e .  
t h a t  the term app l i e s  f o r  b e l l  jar E only when t h a t  b e l l  jar  i s  
being pumped down from rough vacuum (Po,n = 10-2 t o r r ) .  

The computer program was arranged so 

Data for ob ta in ing  cons tan ts  fo r  the equation were taken from 
Dayton" and were normalized a s  A/S  condi t ions which led t o :  

r 1 
t 

-12 - 7x105 (11.1 (An/Sn)) 
E I,. -0.04 Jt  

I 8x10'6 B (2 ) 

Behavior of the  d i f fus ion  pump and overhead chamber i s  given by: 

9 Lq + Sn(Pn - P4) - S4, Max. P 4 9  
v4 d t  P 

where'+ i s  a funct ion of P4 a s  shown i n  FIG 3 .  

For l a t e r  cases  where only a s ing le  b e l l  j a r  was employed, ; i s  
equated t o  1, and the  subsc r ip t  4 i s  r e t a i n e d ' f o r  the  d i f fus ion  pump 
a rea .  

Consideration of the equipment and inspec t ion  of EQU 1-3 ind ica t e  
t h a t  t h r e e  major phases of pumpdown would be expected fo r  a s i n g l e ,  
desorbing b e l l  jar. The f i r s t  phase, cont ro l led  by the AP terms, i s  
r ap id  and accounts f o r  the bulk of the gas.  Phase two embodies a 
gradual pressure dec l ine  a s  the adsorbed ma te r i a l s  a r e  slowly re leased  
and pumped away. Attainment of a cons tan t  pressure l eve l  governed by 

*B. B. Dayton, "1959 Sixth National Symposium on Vacuum Technology, 
Transact ions ,It Pergamon Press , London, 1960 , p .  101. A molecular weight 
of 50 was assumed f o r  a l l  ca l cu la t ions .  

4 

(3) 



the  leak  r a t e s  and pump l imi t a t ions  i s  represented by the  t h i r d  phase. 
The pressure  behavior a t  any t i m e  i s  the  sum t o t a l  of these phases, so 
gradual t r a n s i t i o n s  r a t h e r  than sharp changes of mode a r e  expected. 

A s  shown by i n s t a b i l i t y  problems with the analog computer and 
d i f f i c u l t i e s  i n  numerical i n t eg ra t ion  of the  equat ions on a d i g i t a l  
computer, a r i t hme t i c  problems can be expected because of t he  use of 
small d i f fe rences  of re la t ively large numbers during la te  (low 
pressure)  s t ages  of the  pumpdown. Simulation w a s  attempted on both 
types of computers, bu t  only the  r e s u l t s  from the analog (Electronic  
Associates  Model 131-R) a r e  shown here.  The so lu t ions  a r e  s l i g h t l y  
inaccura te  because of the need f o r  f requent  i n t e r rup t ions  f o r  r e sca l ing .  
The g r e a t  time span and the pressure v a r i a t i o n s  over approximately 
seven o rde r s  of magnitude made analog simulation unusually d i f f i c u l t .  

A modified Runge-Kutta numerical i n t eg ra t ion  w a s  used f o r  i n i t i a l  
pumpdown simulation using the  Burroughs 5000 d i g i t a l  computer , bu t ,  
a f t e r  approximately 15 seconds, a simple Euler i n t eg ra t ion  w a s  found 
t o  be more s a t i s f a c t o r y .  
maintain s t a b i l i t y  once the r a t e  of pressure change began t o  l e v e l  o f f ;  
therefore ,  the d i g i t a l  approach was abandoned. 

I n  no case, however, w a s  it poss ib le  t o  

RESULTS 

Figures  4-6 show analog r e s u l t s  f o r  cases  4-6 from Table I. 
This s e r i e s  i s  f o r  sequent ia l  pumpdown of th ree  b e l l  jars and behaves 
a s  expected. The b e l l  jar being pumped r e a c t s  p r a c t i c a l l y  the same 
i n  each case,  and the o ther  b e l l  j a r  pressures  follow c lose ly  t h a t  
above the d i f fus ion  pump. High-pressure "bursts" a r e  shor t - l ived  
and reach only about 10-4 t o r r ,  but i t  may be s i g n i f i c a n t  t h a t  
repumping t o  pressures  below 10-7 i s  slow because of the  load on the  
d i f fus ion  pump from the b e l l  jar being pumped down the  f i r s t  t i m e  
(with outgassing) .  
almost instantaneously . 

Pressures  below 10-6 t o r r  , however , a r e  recovered 

The s i m i l a r i t y  of the b e l l  j a r  p ressure  curves i n  FIG 4 (one b e l l  
jar) and FIG 7 ( three  b e l l  j a r s )  shows t h a t  the  d i f fus ion  pump system 
i s  capable of handling mul t ip le  chambers simultaneously. Thus, the  
r e s u l t s  shown i n  FIG 4-7 demonstrate t h a t  such a system i s  f e a s i b l e .  
Fur ther  performance c h a r a c t e r i s t i c s  a r e  discussed i n  the  following 
paragraphs. 

External leaks a t  the specif ied r a t e s  a r e  not iceable  only near o r  
a t  the  u l t imate  pressure,  a s  seen by comparing FIG 4 and 8,  the l a t t e r  
having zero b e l l  j a r  leakage. U n t i l  about 30,000 seconds (10-8 t o r r ) ,  
the  curves a r e  i d e n t i c a l .  

5 
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A s  would be expected f o r  p r a c t i c a l l y  i d e n t i c a l  circumstances, b e l l  
jar pressure curves f o r  FIG 5 and 9 coincide throughout t he  pumpdown. 

Even the high evaporation ra te  simulated by case 10 (Table I) does 
n o t  have a l a rge  influence on the  pumpdown r a t e ,  as shown by comparison 
of FIG 6 and 10. Only a f t e r  about 10,000 seconds (10-7 t o r r )  do the 
curves begin t o  diverge. 
expected f o r  case 10, bu t  analog computer i n s t a b i l i t i e s  precluded 
f u r t h e r  d e f i n i t i o n  of the curves. 

Of course, a poorer ul t imate  vacuum would be 

A s  mentioned above, the pressure b u r s t s  feeding back i n t o  low- 
pressure b e l l  j a r s  from 10-2 t o r r  chambers being exposed t o  the  system 
are very b r i e f  and do no t  appreciably exceed 10-4 t o r r .  The e l e c t r o -  
balance disturbance (during weight l o s s  s tud ie s )  a t  such pressures  
would be neg l ig ib l e ,  and, f o r  peak evaporation loads,  the  slow r e t u r n  
t o  ult imate pressures  probably would n o t  impose more than ha l f  a decade 
pressure s a c r i f i c e .  A f u r t h e r  f a c t o r  i s  t h a t  the  model again i s  
conservative i n  t h a t  a uniform pressure was assumed i n  the chamber 
above the d i f fus ion  pump. I n  r e a l i t y ,  most of the  molecules leaving 
the degassing b e l l  j a r  would be d i r ec t ed  towards the cryobaff le  and, 
because of mean free path a t  the low pressures  involved (about 5 x 
would no t  be def lected back i n t o  o the r  b e l l  j a rs .  Cryopumping of the 
evaporated molecules on both small and l a r g e  l i q u i d  nitrogen-cooled 
b a f f l e s  would add s t i l l  another s a f e t y  f a c t o r .  

I n  keeping with the  d e s i r e  f o r  a contingency c a p a b i l i t y  f o r  high 
pump speeds a t  low pressures  mentioned i n  the introduct ion,  cases 11 
and 12 (Table I) f o r  l a rge  chambers a top the d i f fus ion  pump were 
simulated. Figures 11 and 12 show t h a t  such a c a p a b i l i t y  e x i s t s  b u t  
t h a t  surface degassing times may be p roh ib i t i ve .  I n  such cases ,  
thermal bakeout o f  the wa l l s  t o  expedite removal of adsorbed materials 
would warrant s e r ious  consideration. Reference t o  the  source f o r  EQU 2 
would show which terms are  temperature dependent. Assumed room temper- 
a t u r e s  would have t o  be replaced by bakeout temperature i n  the equation 
to  adapt  the model t o  bakeout simulation. 

The concept of a s ing le  p o r t  system having a high vacuum pumping 
s t a t i o n  matched i n  s i z e  with the  b e l l  j a r  valve and cryobaff le  i s  
examined in  FIG 12, where po in t s  shown a r e  c ros sp lo t t ed  from FIG 4 f o r  
comparison. As  expected from the higher d i f fus ion  pumping capaci ty  of 
the multiport  pump, the l a t t e r  case e x h i b i t s  more r ap id  pumpdown, which 
i s  another f a c t o r  i n  favor of the  mult iport  system. 

Because a l l  the  foregoing was appl ied t o  hypothet ical  systems, an 
experimental check on the  accuracy of the  simulation was des i r ab le  i f  
not  imperative. Therefore, an e x i s t i n g  laboratory system (designated 
4A) w a s  simulated by measuring components, ca l cu la t ing  parameters, and 
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using the  manufacturer's curve f o r  the d i f fus ion  pump behavior (case € 4 ,  
Table I ) .  
p ressures  a r e  shown i n  FIG 14, where the  p lo t t ed  poin ts  a r e  from ac tua l  
system tests which were requested and received by the  au thors  from a 
t h i r d  pa r ty  having no knowledge of the simulated r e s u l t s .  Considering 
the  many assumptions involved i n  the model, p a r t i c u l a r l y  i n  the de- 
gassing r e l a t ionsh ip  (EQU 2) , the  agreement between system performance 
and simulated r e s u l t s  i s  believed t o  be very s a t i s f a c t o r y .  

Both calculated b e l l  j a r  and ca lcu la ted  d i f fus ion  pump 

Insofar  a s  computation methods could be compared, i t  may be 
s t a t e d  t h a t  i n  every case where d i g i t a l  computer r e s u l t s  w e r e  obtained 
(usual ly  f o r  the  f i r s t  20 seconds of pumpdown) agreement with analog 
r e s u l t s  w a s  wi th in  the accuracy of the graphs. 

CONCLUSIONS 

The mathematical model and e l e c t r i c a l  analog simulation technique 
provides a reasonable representa t ion  of high vacuum equipment. 

Using t h i s  technique, i t  was shown t h a t  a mult iport  vacuum system 
employing a la rge  d i f fus ion  pump i s  f e a s i b l e  i f  no t  preferab le  t o  
ind iv idua l  single-chamber systems of supposedly similar capac i t i e s .  

B e l l  j a r  pressure in t e rac t ions  were shown t o  be minimal; however, 
the  e f f e c t  of re ta rded  r e t u r n  to ul t imate  vacuum must be evaluated f o r  
each app l i ca t ion  considered. Experience with high vacuum weight l o s s  
s tud ie s  ind ica t e s  t h a t  such a phenomenon probably i s  no t  c r i t i c a l ,  
p a r t i c u l a r l y  when the pressure gradient  between the  test oven and the  
b e l l  j a r  chamber i s  considered. 

It should be noted t h a t  the advantages of the  mult iport  concept 
a r e  due l a rge ly  t o  high pumping speed p lus  high b e l l  jar  po r t  conductance. 
U s e  of m u l t i p l e  chambers s e t  on sidearm tubes would g rea t ly  reduce the  
conductances (Table I )  and d r a s t i c a l l y  diminish the  u t i l i t y  and 
a t t r a c t i v e n e s s  of the mult iport  type of system. Thus, the d i r e c t  
overhead chamber-to-bell jar chamber connection i s  of utmost importance. 

Preliminary c o s t  s tud ie s  indicated t h a t  a s ix-por t  32-inch 
d i f fus ion  pump having 10-inch (15 liter) b e l l  j a r s  over nominal 6-inch 
p o r t s  (arranged as i n  FIG 1 and 2) would be competit ive i n  p r i c e  wi th  
s i x  separa te  nominal 6-inch systems while  o f f e r i n g  many ex t r a  f ea tu res .  
Complete layout  and c o s t  s tud ie s  for  both types of systems should 
precede a f i n a l  choice .  

The e n t i r e  simulation scheme involves '  conservative assumptions and 
es t imates  which, i f  p rec i se ly  known, would undoubtedly r e s u l t  i n  hypo- 
t h e t i c a l  performance curves even more favorable  t o  the mul t ipor t  system 
concept . 
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BELL JAR 

BASEPLATE FEED- 
THROUGH COLLAR 
VALVE 
CRYOGENIC BAFFLE 

L l  

I I 

OVERHEAD p4*v4 
CHAMBER 

An= SURFACE AREA 

L,=LEAK RATE 

P, =PRESSURE 

Sn =CON DUCTAN CE 
(BUT S4zPUMP 
SPEED) 

V,=CHAMBER VOLUME 

s*4 / 
-VALVE 

-CRYOGENIC BAFFLE 

-NOMINAL 32" OIL 
DIFFUSION PUMP 

FORE PU M P 1 NG 
AS REQUIRED 

FIGURE 1. MULTIPORT SYSTEM; HIGH VACUUM SCHEMATIC 
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FIGURE 4 .  SIMULATION FESULTS FOR CASE 4 
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FIGURE 5 .  SIMULATION RESULTS FOR CASE 5 
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--- --- - 
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FIGURE 6. SIMULATION RESaTS FOR CASE 6 
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FIGURE 7 .  SIMULATION RESULTS FOR CASE 7 
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FIGURE 8. SIMULATION RESULTS FOR CASE 8 
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FIGURE 9 .  SIMULATION RESULTS FOR CASE 9 
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FIGURE 10. SIMULATION RESULTS FOR CASE 10 
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FIGURE 11. SIMULATION RESULTS FOR CASE 11 
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FIGURE 12. SIMULATION RESULTS FOR CASE 12 
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FIGURE 14. SIMULATION RESULTS FOR CASE 14 
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